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Abstract. Symmetry properties of the one-dimensional Fokker–Planck equations with arbitrary
coefficients of drift and diffusion are investigated. It is proved that the group symmetry of these
equations can be one, two, four or six parametric and corresponding criteria are obtained. The
changes of the variables reducing Fokker–Planck equations to the heat equation and Schrödinger
equation with certain potentials are determined. Using the substructure of the invariance algebra
of the Rayleigh process equation we obtain the differential invariants and construct some classes
of the exact solutions of this equation.

1. Introduction

The Fokker–Planck equation (FPE) is the basic equation in the theory of continuous Markovian
processes. In a one-dimensional case the FPE has the form [1,2]

∂u

∂t
= − ∂

∂x
[A(t, x)u] +

1

2

∂2

∂x2
[B(t, x)u] (1)

whereu = u(t, x) is the probability density, andA(t, x) and B(t, x) are differentiable
functions: the coefficients of drift and diffusion, respectively.

The FPE serves as a mathematical model for a number of problems in the physical and
biological sciences (see [1–10]). Blumen and Cole [11] used the Lie symmetry method to find
the invariant solutions of the heat equation and Bluman did the same thing for a special case
of equation (1). He also showed that every one-dimensional FPE with a six-parameter group
of Lie symmetry can be transformed to a diffusion heat equation [12]. Recently, Sastry and
Dunn [13], Cicogna and Vitali [14] and Shtelen and Stognii [15] applied Lie’s extended group
method to investigate the symmetry structure of some interesting cases of the Fokker–Planck-
type equations.

We have investigated symmetry properties of equation (1) under the infinitesimal basis
operators [16–18]

X = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (2)

The symmetry operators are defined from an invariance condition

X̂
2
L|L=0 = 0 (3)
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where

L = ∂u

∂t
+
∂

∂x
[A(t, x)u] − 1

2

∂2

∂x2
[B(t, x)u].

X̂
2

is the second prolongation of the operatorX, which is constructed according to the

formulae [16–18]:

X̂
2
= X + θt

∂

∂ut
+ θx

∂

∂ux
+ θxx

∂

∂uxx

θt = Dtη − utDtξ
0 − uxDtξ

1

θx = Dxη − utDxξ
0 − uxDxξ

1

where

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux

Dx = ∂

∂x
+ ux

∂

∂u
+ uxt

∂

∂ut
+ uxx

∂

∂ux
.

From these formulae and the condition of invariance (3), equating coefficients by a functionu

and its derivativesux , utt , utx , uxx (ut can be expressed from equation (1)) to zero it is possible
to determine the following system of equations on functionsξ0, ξ1, η:

ξ0 = ξ0(t) ξ1 = ξ1(t, x) η = χ(t, x)u
2ξ1
x B − ξ0

t B − ξ1Bx − ξ0Bt = 0
ξ0
t (A− Bx)ξ1

t + ξ0(At − Btx) + ξ1(Ax − Bxx)− ξ1
x (A− Bx) + 1

2Bξ
1
xx = Bχx

χt + ξ0
t (Ax − 1

2Bxx) + ξ0(Atx − 1
2Btxx) + ξ1(Axx − 1

2Bxxx) + χx(A− Bx)− 1
2Bχxx = 0

(4)

where subscriptst , x mean differentiation on appropriate variables. Let us also introduce the
following notation: ∂

∂t
= ∂t , ∂

∂x
= ∂x , ∂

∂u
= ∂u.

Remark. The symmetry operatorsf (t, x)∂u, wheref (t, x) is any solution of equation (1),
are excluded from further consideration.

In section 2 the necessary and sufficient condition under which the FPE is reduced to
a homogeneous FPE is obtained. In section 3 we find the criterion of invariance of the FPE
under four- and six-parametrical groups and the corresponding formulae transforming either to
heat or Schr̈odinger equations are calculated in section 4. Finally, in section 5 we give several
important examples of homogeneous FPEs and construct some classes of exact solutions for
the equation describing the Rayleigh process.

2. The basic theorem

Theorem 1. If a symmetry operator (2)Q 6= u∂u for FPE (1) exists then we have the following
kind of transformation:

t̃ = T (t) x̃ = X(t, x) u = v(t, x)ũ
which reduces it to equation (1) with coefficients of drift and diffusionÃ = A(x̃), B̃ = B(x̃).

Proof. A condition of the theorem implies that the solutionξ0, ξ1, χ of the determining
equations (4) exists such that eitherξ0 or ξ1 are not identically equal to zero. Actually, from
conditionsξ0 ≡ ξ1 ≡ 0 it follows thatχ = λ = const, i.e.Q = u∂u. Furthermore, two
alternatives will be considered:
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(1) there is a solutionξ0 6≡ 0, ξ1, χ ;
(2) there is a solutionξ0 ≡ 0, ξ1 6≡ 0, χ (in this case allξ0 ≡ 0).

We shall prove the theorem for each of these alternatives.
(1) Let ξ0 6≡ 0, ξ1, χ be a solution of the determining equations (4). We consider

transformations

t̃ = T (t) x̃ = ω u = v(t, x)ũ (5)

whereT (t) = ∫ dt
ξ0(t)

, and the functionsω = ω(t, x), v(t, x) satisfy the equations

ξ0ωt + ξ1ωx = 0
ξ0vt + ξ1vx = χv (6)

whereω 6= const is any fixed solution of equation (6). It is easy to show that the symmetry
operator

Q = ξ0∂t + ξ1∂x + χu∂u

with the new variables(t̃ , x̃, ũ) has the formQ̃ = ∂t̃ . Let us show that transformation (5)
exists which reduces equation (1) to a FPE with coefficientsÃ(t̃ , x̃), B̃(t̃ , x̃). However, as the
transformed equation has the symmetry operatorQ̃ = ∂t̃ , it follows thatÃ = Ã(x̃), B̃ = B̃(x̃).

So, by applying transformation (5) to equation (1) we find the following equation:

ũt̃ =
ξ0

v
{[−vt + ( 1

2Bxx − Ax)v + (Bx − A)vx + 1
2Bvxx ]ũ

+[−vωt + (Bx − A)vωx + 1
2B(2vxωx + vωxx)]ũx̃ + 1

2Bvω
2
xũx̃x̃}. (7)

This also means that in expressions dependent on variables(t, x) it is necessary to make the
replacement(t, x) → (t̃ , x̃). For equation (7) to be a FPE it is necessary that the unknown
coefficientsÃ(t̃ , x̃), B̃(t̃ , x̃) satisfy the following equations:

B̃(t̃ , x̃) = Bξ0ω2
x

B̃x̃ − Ã = −ξ0ωt + (Bx − A)ξ0ωx +
vx

v
ξ0ωxB +

1

2
ξ0ωxxB

1

2
B̃x̃x̃ − Ãx̃ = ξ0

vt

v
+

(
1

2
Bxx − Ax

)
ξ0 + ξ0

vx

v
(Bx − A) +

1

2

vxx

v
ξ0B.

(8)

(a) We now consider the first of equations (8). Let us show that∂t̃ B̃ = 0. From
transformations (5), (6) one may find that

∂t̃ = ξ0∂t + ξ1∂x. (9)

Then, from the first equations of (6) and (9) it follows that

∂t̃ (Bξ
0ω2

x) = ξ0ω2
x [ξ

0Bt + ξ1Bx + ξ0
t B − 2Bξ1

x ] = 0.

The last equality is carried out by virtue of equations (4).
(b) Now we consider the second equation of system (8). From the first equation of this

system we have

B̃x̃ = ξ0

ωx
∂x(Bω

2
x).

Substituting this expression into the second equation of system (8) we findÃ:

Ã = ξ0ωt +Aξ0ωx − vx
v
ξ0ωxB +

3

2
ξ0ωxxB. (10)



8344 S Spichak and V Stognii

As well as in item (a) it is possible to show that the consequence of the system of equations
(4) is

∂t̃ Ã = (ξ0∂t + ξ1∂x)

[
ξ0ωt +Aξ0ωx − vx

v
ξ0ωxB +

3

2
ξ0ωxxB

]
= 0.

In the followingÃ = Ã(x̃).
(c) Let us consider the third equation of system (8). The left-hand side of the equation

1
2B̃x̃x̃−Ãx̃ = F(x̃) = F(ω) follows from items (a) and (b). The general solution of the second
equation (6) isv(t, x) = v∗(t, x)G(ω), wherev∗(t, x) is some solution of this equation, and
G(ω) is an arbitrary function. Substituting this relation into the right-hand side of the third
equation in (8) we obtain

F(ω) = F1(t, x) + F2(t, x)G
′ + F3(t, x)[G

′′ +G′2] F3(t, x) 6= 0.

By analogy with the items (a), (b) taking into account (4), (6), we come to

∂t̃Fi(t, x) = [ξ0∂t + ξ1∂x ]Fi(t, x) = 0 i = 1, 2, 3.

ThenFi = Fi(x̃) = Fi(ω). Finally, we have

F(ω) = F1(ω) + F2(ω)G
′ + F3(ω)[G

′′ +G′2] F3 6= 0.

Choosing functionG(ω) as some solution of this equation, we find transformation (5), where
T = ∫

dt
ξ0 , v(t, x) = v∗(t, x)G(ω), which reduces the appropriate FPE (1) to a FPE with

coefficientsB̃(x̃), Ã(x̃).
(2) Let there be a solution of the determining equations (4) such thatξ0 ≡ 0, ξ1 6= 0, χ .

In this case we choose transformations

t̃ = t x̃ = R(t, x) u = v(t, x)ũ (11)

under the condition of

ξ1Rx = 1 ξ1vx = χv. (12)

The proof of the existence of transformations (11), (12) which to do not change the form
of FPE is similar to the proof given in item (1). Under these the transformation operator
Q = ξ1∂x + χu∂u is reduced toQ̃ = ∂x̃ . Then the new coefficients̃A, B̃ in the transformed
FPE depend only ont . As is known, such equations are reduced to the heat equation by
transformations of the following kind:

t̃ = T (t) x̃ = R(t, x) u = v(t, x)ũ. (13)

The theorem is, therefore, proved. �

Theorem 2. The dimension of an invariance algebra of FPE (1) can be equal to 1, 2, 4 or 6.

Proof. If the dimension of algebra is greater than 1 then equation (1) is reduced to the equation
with Ã = Ã(x̃), B̃ = B̃(x̃). Classification of such equations is also known: the dimension of
their invariance algebra is either 2, 4 or 6 [14]. �
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3. Criterion of invariance FPE under four- and six-parametrical groups of symmetry

In [19] it is shown that any diffusion process with coefficients of driftA(t, x) and diffusion
B(t, x) can be reduced to a process with appropriate coefficientsÃ(t, x) = A(t, x)/B(t, x)
andB̃(t, x) = 1 through the random replacement of timeτ(t). Using the result of theorem 1
we perform a symmetry classification of FPE for the coefficientsB(t, x) = 1 and anyA(t, x)
just as was done in [14] for the caseA = A(x) (a homogeneous process). So, by putting
B = 1 into equations (4) it is easy to show that

ξ0 = τ(t) ξ1 = 1
2xτ

′ + ϕ(t)
3
2τ
′M + τMt + ( 1

2τ
′x + ϕ)Mx = 1

2τ
′x + ϕ′′

χ = 1
2τ
′xA(t, x)− 1

4x
2τ ′′ − ϕ′x + ϕA(t, x) + τ

∫ x

x0

∂A(t, ξ)

∂t
dξ + θ(t)

(14)

whereM = At + 1
2Axx +AAx , x0 andθ(t) are arbitrary point and function, respectively. Let us

find a condition onM under which there exists at least two linearly independent solutionsτ(t)

of equations (14). In this case, from theorem 2, it follows that there exists either three or five
operators of symmetry (besides trivialu∂u). Let us assume thatMxx 6= 0. After differentiating
both parts (14) twice onx we have

5
2τ
′Mxx + τMtxx + ( 1

2τ
′x + ϕ)Mxxx = 0. (15)

Now, if we assume thatMxxx = 0, i.e.Mxx = F(t), then the following condition holds:
5
2τ
′F + τF ′ = 0. (16)

For this equation there is only one linearly independent solution, thereforeMxxx 6= 0. Then
from (15):

−ϕ(t) = 5Mxx + xMxxx

2Mxxx

τ ′ +
Mtxx

Mxxx

τ = h(t, x)τ ′ + r(t, x)τ.
So if (τ1, ϕ1), (τ2, ϕ2) are linearly independent thenτ1, τ2 are linearly independent, and also
hxτ

′ + rxτ = 0. Thus,

hxτ
′
1 + rxτ1 = 0 hxτ

′
1 + rxτ1 = 0.

As the Wronskian

∣∣∣∣ τ ′1 τ1

τ ′2 τ2

∣∣∣∣ 6= 0, then from this system it follows thathx ≡ 0, rx ≡ 0, i.e.

5Mxx + xMxxx

2Mxxx

= h(t) Mxxt

Mxxx

= r(t). (17)

From conditions (17) it is easy to deduce that

M = λ(x −H(t))−3 + F(t)x +G(t) (18)

whereλ = const 6= 0, andH , F , G are arbitrary functions. Now notice that ifMxx = 0,M
has the form of (18) withλ = 0. Thus condition (18) is necessary for the invariance algebra to
possess dimension four or six. Substituting (18) into (15) and equating zero factors atx −H ,
(x −H)−4 and 1, we obtain the following conditions:

2τ ′F + τF ′ = 1
2τ
′′′ λ(τH ′ − 1

2τ
′H − ϕ) = 0

3
2τ
′(FH +G) + τ(F ′H +G′) + F( 1

2τ
′H + ϕ) = 1

2τ
′′′H + ϕ′′′.

(19)

(1) Letλ 6= 0. Derivingϕ(t) = τH ′ − 1
2τ
′H from the second equation and substituting

it into the third equation we have
3
2τ
′(FH +G−H ′′) + τ(FH +G−H ′′)′ = 0.
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Due to the condition of existence at least two independent solutionsτ1, τ2 result in the equation
FH +G−H ′′ = 0. In this case the number of fundamental solutions of system (19) is three.
Actually, there are three linear independent solutionsτ1, τ2, τ3 of the first equation of (19).
From the second equation of (19)ϕi is expressed byτi , i = 1, 2, 3.

(2) If λ = 0, the system of equations (19) has five linearly independent solutions(τi, ϕi),
i = 1, 5.

The theorem is therefore proved.

Theorem 3. (1) The class FPE (1) withB = 1 admitting four-dimensional algebra of
invariance is described by the condition

At + 1
2Axx +AAx = λ(x −H(t))−3 + F(t)x +G(t) (20)

whereλ = const6= 0,G satisfies the condition

G = H ′′ − FH (21)

whereF(t),H(t) are arbitrary functions.
(2) The class FPE (1) withB = 1 admitting six-dimensional algebra of invariance is

described by condition (20) in whichλ = 0, F ,G are arbitrary functions.

Remark. In particular, if the coefficientA(t, x) satisfies the Burgers equation then FPE (1) is
reduced to the heat equation (see [20]).

4. Transformation of the Fokker–Planck equations to homogeneous equations

(1) It turns out that FPE (1) (B = 1), (20) atλ = 0 is reduced to the heat equation [20]. We
find the appropriate transformation (5), (6). Letτ be any solution of system (19) andτ > 0
(evidently it is always possible to choose the solutionτ(t) > 0 on some interval). From the
formulae (6), (14) it is easy to prove thatω(t, x) = τ 1/2x− ∫ t

t0
ϕ(ξ)τ−3/2(ξ) dt , wheret0 is an

arbitrary fixed point. Let us consider the transformation

t̃ = 1

2

∫
dt

τ

x̃ = ω(t, x) = τ−1/2x −
∫ t

t0

ϕ(ξ)τ−3/2(ξ) dξ

u(t, x) = v(t, x)ũ(t̃ , x̃).

(22)

Having made in (1), (20) the replacement variable (22) we arrive at the equation

ũt̃ = −2τ

(
vt

v
+Ax +A

vx

v
− 1

2

vxx

v

)
ũ

−2

(
−1

2
τ 1/2τ ′x − ϕτ−1/2 +Aτ 1/2 − vx

v
τ 1/2

)
ũx̃ + ũx̃x̃ . (23)

Equating the factor at̃ux̃ to zero, we obtain

v = exp

(
− 1

4τ
−1τ ′x2 − τ 1ϕx +

∫ x

x0

A(t, ξ)dξ + h(t)

)
(24)

whereh(t) is an arbitrary function andx0 is some fixed point. Substituting (24) into the
expressionvt

v
+Ax +Avx

v
− 1

2
vxx
v

(factor atũ in (23)) and equating it to zero we get

h′(t) = 1
2[τ−2ϕ2 − 1

2τ
−1τ 1− Ax(t, x0)− A2(t, x0)] (25)

1
2τ
−1τ ′′ − 1

4τ
2(τ ′)2 = F τ−1ϕ′ − 1

2τ
2τ ′ϕ = G. (26)
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It is easy to prove that if(τ 6= 0, ϕ) is some solution of system (26) then it satisfies system
(19) (λ = 0,M = 0). Then we have transformation (22), where functionsv(t, x), τ(t), ϕ(t)
can be found from (24)–(26), reducing FPE (1), (20)(λ = 0) to the heat equation

ũt̃ = ũx̃x̃ . (27)

Note that system (26) is reduced to the following:

2y ′ + y2 = 4F y = τ ′

τ
ϕ = τ 1/2

∫ t

t0

τ 1/2G dt. (28)

(2) We now consider FPE (1), (20) withλ 6= 0. As in case (1), transformation (22) reduces
this equation to (23). The conditions for (23) to be a FPE are as follows:

Ã = Ã(ω) = −τ−1/2τ ′x − 2ϕτ−
1
2 + 2Aτ 1/2 − 2τ 1/2vx

v

Ãω = 2τ

(
vt

v
+Ax +A

vx

v
− 1

2

vxx

v

) (29)

whereω is given in (22). The first condition is equivalent to the equation (see (9))

∂t̃ Ã =
[
τ∂t +

(
1

2
τ ′x + ϕ

)
∂x

] (
−τ−1/2τ ′x − 2ϕτ

1
2 + 2Aτ 1/2 − 2τ 1/2vx

v

)
= 0. (30)

Omitting intermediate calculations we give the general solutionv(t, x) of equation (30):

v(t, x) = exp

[ ∫ x

x0

A(t, ξ)dξ − 1
4τ
−1τ ′x2 − τ−1ϕx + k(ω)

]
(31)

wherek(ω) is an arbitrary function,x0 is some fixed point. Substituting (31) into the first
equation of (29) one can easily verify thatÃ = −k′(ω) (k′(ω) = dk(ω)

dω ). Furthermore, let us

substituteÃ(ω) = −k′(ω), v(t, x) (31) into the second equation of (29). Having chosen the
conditions

τ 1/2
∫ t

t0

ϕτ−3/2 dt = H 1
2τ
−1τ ′′ − 1

4τ
−2τ

′2 = F τ−1ϕ′ − 1
2τ
−2τ ′ϕ = G (32)

k′′ − k′2 = λω−2 (33)

the second equation of (29) is satisfied. Condition (32) is a possible choice because, as it is
easy to verify, any solutionτ 6= 0, ϕ of the given system is a particular solution of the equation
systems (19), (21). System (32), taking into account (21), is equivalent to

2y ′ + y2 = 4F y = τ ′

τ
ϕ = τ 3/2(τ−1/2H)′. (34)

Thus the theorem is proved.

Theorem 4. FPE (1), (20), (21) withλ 6= 0, invariant under four-parameter algebra of
invariance, through transformations

t̃ = T (t) x̃ = τ−1/2x − τ−1/2H(t) u = v(t, x)ũ(t̃ , x̃)
whereT = 1

2

∫
dt
τ (t)

, v(t, x) has the form of (31), whereτ 6= 0 is any solution of the first
equation of (34).k(ω) is a solution of equation (33) and is reduced to the equation

ũt̃ = 2k′′(ω)ũ + 2k′(ω)ũω + ũωω.

Remark. By making the following replacement in the last equation:

t̄ = t̃ x̄ = ω ũ = exp(k(ω))ū
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and taking account condition (33), this equation is reduced to the following Schrödinger
equation:

ūt̄ = ūx̄x̄ +
λ

x̄2
ū.

Thus, in a FPE with a four-parametrical group of symmetry there exists an ‘initial’ equation
to which they are reduced; however, the equation is not a FPE as it takes place in a six-
parametrical group.

5. Homogeneous examples of the FPEs having six- and four-parametrical groups of
symmetry and some classes of exact solutions

In section 2 we specified a necessary and sufficient condition reducing FPE (1) withB = 1
to a homogeneous FPE withB = 1, i.e. to the equation with a coefficient of driftA = A(x).
The appropriate replacement variables(t, x, u) → (t̃ , x̃, ũ) were also constructed. Now we
list examples of the homogeneous equations which are frequently met in applications.

5.1. Equations which are reduced to the heat equation

(1) The equation describing the Ornstein–Uhlenbeck process [1]:

∂u

∂t
= ∂

∂k
(kxu) +

1

2
D
∂2u

∂x2
. (35)

HereA = −kx, B = D = const. Furthermore, in all examples whereB = const 6= 0 it is
possible, without restriction of generality, to putB = 1. Using the replacement

u(t, x) = v(t, x)ũ(t̃(t), x̃(t, x)) (36)

wherev(t, x), t̃ , x̃ are found from formulae (22), (24)–(26):

v = exp(kt) x̃ = exp(kt)x t̃ = 1

4k
exp(2kt)

where the Ornstein–Uhlenbeck equation (35) results in heat equation (27).
(2) Diffusional process in a field of force, of weight [1]:

∂u

∂t
= ∂

∂x
(gu) +

1

2

∂2u

∂x2
. (37)

Equation (37) is reduced to (27) through replacement (36), where

v = exp

(
−gx − g

2

2
t

)
x̃ = x t̃ = 1

2
t.

(3) The equation of a Rayleigh-type process [15]:

∂u

∂t
= ∂

∂x

[(
γ x − 1

x

)
u

]
+

1

2

∂2u

∂x2
(38)

is reduced to (27) through replacement (36), where

v = exp(2γ t)x x̃ = exp(γ t)x t̃ = 1

4γ
exp(2γ t).

Let us consider three equations (39)–(41) describing models in population genetics [6]:

(4)
∂u

∂t
= ∂2

∂x2
[(1− x2)2u]. (39)
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Using replacement [10]

u = 1√
B(x)

w(τ, y) τ = t y =
∫

dx√
B(x)

equation (39) results in

Wτ = −(A(y)w)τ + 1
2wyy

whereA(y) = √2th(
√

2y), B = 1. It is easy to verify thatA(y) satisfies condition
(20) (λ = 0). Then the superposition of the above transformation and the corresponding
replacement (22), (24)–(26) gives replacement (36), where

v = exp(−t)(1− x2)−3/2 x̃ = 1

2
ln

1 +x

1− x t̃ = t
which transforms equation (39) into heat equation (27).

(5)
∂u

∂t
= α

2

∂2

∂x2
[x2(1− x2)u]. (40)

With the method used in item (4) we get replacement (36), where

v = exp
(
−α

8
t
)
x−3/2(1− x2)−3/2 x̃ = ln

x

1− x t̃ = α

2
t.

(6)
∂u

∂t
= α

2

∂2

∂x2
[(x − c)2u] + β

∂

∂x
[(x − c)u]. (41)

Equation (41) is reduced to heat equation (27) through replacement (36), where

v = exp

{
−
(
β2

2α
+
β

2
+
α

8

)
t

}
(x − c)(−3/2+β/α) x̃ =

√
2/α ln(x − c) t̃ = t.

(7) A FPE of the type [9]

∂u

∂t
= − ∂

∂k
[a(t)x + b(t)]u + c(t)

∂2u

∂x2
(42)

is transformed into heat equation (27) by replacement (36), where [15]

v = exp{α(t)} x̃ = exp{α(t)}x + β(t) t̃ = γ (t)
and, furthermore,

α(t) = −
∫ t

0
a(s) ds β(t) =

∫ t

0
b(s) exp{α(s)} ds γ =

∫ t

0
c(s) exp{2α(s)} ds.

5.2. Equations with four-parametrical invariance group

(1) In [5] the following equation was considered:

∂u

∂t
= − ∂

∂x
(αxu) +

∂2

∂x2
(βxu). (43)

Using the replacement

u = 1√
2βx

w(τ, y) τ = t y =
√

2x/β

we transform equation (43) into the following FPE:

∂w

∂τ
= − ∂

∂y

[(
αy

2
− 1

2y

)
w

]
+

1

2

∂2w

∂y2
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whereA(y) = ( αy2 − 1
2y ) satisfies condition (20).

(2) Let us consider a FPE [6]

∂u

∂t
= − ∂

∂x

(
1

4
x−2pu

)
+

1

2

∂2

∂x2

(
1

2
x1−2pu

)
(44)

wherep 6= − 1
2 (the casep = 1

2 corresponds to a six-parametrical group: see example (6)).
Using the replacement

u =
√

2x(2p−1)/2w(τ, y) τ = t y = 2
√

2

2p + 1
x(2p+1)/2

we find that equation (44) is reduced to the following FPE:

∂w

∂τ
= − ∂

∂y

(
1

2y
w

)
+

1

2

∂2w

∂y2

whereA(y) = 1
2y satisfies condition (20).

(3) We consider the equation describing the Rayleigh process:

∂u

∂t
= − ∂

∂x

[(µ
x
− γ x

)
u
]

+µ
∂2u

∂x2
(45)

whereγ ,µ are arbitrary constants. The functionA(x)2µ = 1
2x − γ x

2µ , satisfies condition (20). The
invariance group of equation (45) is also neither isomorphic to the invariance group of the heat
equation nor reduced to it with the help of local transformations.

Theorem 5. The maximal invariance algebra of equation (45) is a four-dimensional algebra
A4 with the basic operators

P0 = ∂

∂t
D1 = exp{2γ t}

(
1

γ

∂

∂t
+ x

∂

∂x
+

(
1− γ

µ
x2

)
I

)
I = u ∂

∂u
D2 = exp{−2γ t}

(
1

γ

∂

∂t
+ x

∂

∂x
− I

) (46)

which satisfy the commutation relations

[P0,D1] = 2γD [D1,D2] = 4

γ
P0 + 4I

[P0,D1] = 2γD [I, P0] = [I1,D1] = [I1,D2] = 0.
(47)

The proof can be obtained by Lie’s method. Let us take advantage of operators (46) for
construction of the exact solutions of equation (1). First of all, we show that its known
stationary solution [1]

us(x) = γ x

µ
exp

(
−γ x

2

2µ

)
(48)

is the special case of the solution invariant under the operatorD1 (46). For this purpose we
construct the ansatz (substitution) invariant underD1. According to the algorithm of [18] if
the equation has operator symmetry, then an exact solution can be found in the form

u(x) = ψ(x)ϕ(ω)
whereψ(x) is a function defined from the condition

Qψ(x) ≡ [ξ0(t, x)∂t + ξ1(t, x)∂x + η(t, x, u)]ψ(x) = 0

ξ0(t, x)∂tω + ξ1(t, x)∂xω = 0.
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Table 1.

Subalgebra Invariant variable Ansatz

I ω1 = t , ω2 = x u = 0
1
γ
P0 + (1 +α)I ω = x u = exp{γ (1 +α)t}ϕ(ω)

D2 ω = exp{γ t}x u = exp{γ t}ϕ(ω)
− 1

2D2 ± I ω = exp{γ t}x u = exp{γ t ± e2γ t }ϕ(ω)
1
2D1 − 1

2D2 + αI ω = x2e2γ t

e4γ t+1
u = exp

{
γ t − γ

2µ
e4γ t x2

e4γ t+1
+ αarctg(e2γ t )

}
ϕ(ω)

An anzatz leads to the reduction of a FPE to an ordinary differential equation (ODE) for a
functionϕ(ω). For the operatorD1 this ansatz has the form

u(t, x) = x exp

(
−γ x

2

2µ

)
ϕ(ω) ω = x exp(γ t). (49)

The substitution of (49) into (45) gives the ODE

ωϕ̈ + ϕ̇ = 0 (50)

where the overdot designates differentiation onω. The general solution of equation (50) is

ϕ(ω) = c1 lnω + c2. (51)

The substitution of (51) into (49) gives the following solution of equation (45):

u(t, x) = x exp

{
−γ x

2

2µ

}
(c1(γ t + ln x) + c2). (52)

It is easy to see that solution (48) follows from (52) whenc1 = 0, c2 = γ /µ. For a more
regular description of the solutions of equation (45) we find one-dimensional unequivalent
subalgebras of the invariance algebraA4 (46), (47), and then for every such subalgebra we
construct an invariant ansatz. Firstly, we notice that algebraA4 is isomorphic to algebra
AGL(2, R) = ASL(2, R)⊕ I ; the isomorphism is achieved by the linear transformation

B1 = 1

γ
P0 + I B2 = 1

2D1 B3 = − 1
2D2 B4 = I.

Using this fact, we construct table 1 showing one-dimensional subalgebras and the appropriate
invariant ansatze.

As a result of the substitution of ansatze 2–5 from table 1 in (45) we have following
reduced ODEs:

(2) µω2ϕ̈ + (γ 3− µω)ϕ̇ + (µ− αω2)ϕ = 0
(3) ω2ϕ̈ − ωϕ̇ + ϕ = 0
(4) µω2ϕ̈ − µωϕ̇ + (µ± 2γω2)ϕ = 0
(5) 4µ2ω2ϕ̈ + (γ 2ω2 − 2γαµω +µ2)ϕ = 0.

(53)

In particular, it is easy to find the general solution of the third equation of (53) and, using the
appropriate third ansatz from the table, to obtain the particular solution of equation (45):

u(t, x) = x exp{2γ t}(c1 + c2(ln x + γ t)).

6. Conclusions

We found the criterion when a FPE with a time-dependent drift coefficient can be reduced to a
homogeneous FPE with the help of local transformations. It appears that it is connected with
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symmetry properties of this equation: namely, a FPE is reduced to a homogeneous equation
if and only if even one operator of symmetry different fromu∂u exists. From this criterion
and previous results [14] it turns out that the dimension of the group of symmetry of a one-
dimensional FPE can equal 1, 2, 4 or 6. Moreover, in the case where a FPE is invariant under
six- or four-parametrical groups they can be reduced with the help of local transformations to
the ‘initial’ equations: namely, to the heat equation or to the Schrödinger one with the potential
V (x) = λ

x2 , respectively. It is worth noting that specific FPEs in applications are invariant, as
a rule, under groups of symmetry with the given dimensions. If one has the solutions of these
two ‘initial’ equations it is possible to build the solutions of an appropriate FPE. In the case of
the Schr̈odinger equation solutions can be found by the reduction method to the ODEs, using
one-dimensional subalgebras of its four-dimensional algebra.

The questions of how to construct a transformation to reduce a FPE with a two-dimensional
group of symmetry to a homogeneous FPE and whether or not there is an appropriate ‘initial’
equation still remain open. However, here, as well as in the case of a one-dimensional group of
symmetry, the approach of non-local transformations (for example, Darboux transformations)
is possible. It would also be interesting to investigate conditional andQ-conditional invariancy,
which generalizes the concept of Lie invariancy (see [18]).
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