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Abstract. Symmetry properties of the one-dimensional Fokker—Planck equations with arbitrary
coefficients of drift and diffusion are investigated. It is proved that the group symmetry of these
equations can be one, two, four or six parametric and corresponding criteria are obtained. The
changes of the variables reducing Fokker—Planck equations to the heat equation @lth§ehr
equation with certain potentials are determined. Using the substructure of the invariance algebra
of the Rayleigh process equation we obtain the differential invariants and construct some classes
of the exact solutions of this equation.

1. Introduction

The Fokker—Planck equation (FPE) is the basic equation in the theory of continuous Markovian
processes. In a one-dimensional case the FPE has the form [1, 2]

u 3 102

rrie —a[A(LX)M] + Eﬁ[B(t,x)u] 1)
whereu = u(t, x) is the probability density, andi(z, x) and B(z, x) are differentiable
functions: the coefficients of drift and diffusion, respectively.

The FPE serves as a mathematical model for a number of problems in the physical and
biological sciences (see [1-10]). Blumen and Cole [11] used the Lie symmetry method to find
the invariant solutions of the heat equation and Bluman did the same thing for a special case
of equation (1). He also showed that every one-dimensional FPE with a six-parameter group
of Lie symmetry can be transformed to a diffusion heat equation [12]. Recently, Sastry and
Dunn [13], Cicogna and Vitali [14] and Shtelen and Stognii [15] applied Lie’s extended group
method to investigate the symmetry structure of some interesting cases of the Fokker—Planck-
type equations.

We have investigated symmetry properties of equation (1) under the infinitesimal basis
operators [16-18]

0 ad d
=0 e — + —
X =8 x ) + 850 X, )+t x ) o (2)
The symmetry operators are defined from an invariance condition
);(L|L:o =0 3)
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where
2

L= 8_u + i[A(t Xu] — 1'8—

ot dx ’ 2 9x?

);( is the second prolongation of the operafor which is constructed according to the
formulae [16-18]:

[B(t, x)u].

A 0 0 0
X=X+6,—+0,— +0,,——
2 ou; ou, Ol x

0; = Din — u,D,é—'o - MxDrfl
O = Dy — u; DE® — u, D, &"

where
Dt — 3 +uri +U1ti +u[xi
ot ou ou; du,
D, = i "'“)ci "'uxfi +uxxi-
0x u du, ouy

From these formulae and the condition of invariance (3), equating coefficients by a function
and its derivatives,, u,,, u., u,, (1, can be expressed from equation (1)) to zero it is possible
to determine the following system of equations on functighs?, »:

£=£% =800 n=x@xu

261 —£°B — B, —£°B, =0

E)(A — BOE +E%(A, — Bi) +EY (A, — B.) —EN(A— B,) + 3BEL, = By,

Xi +EX(Ax — 3B) +E%(Ary — 3Bi) +E (A — 3Br) * Xx(A = By) — §Bx =0
where subscripts, x mean differentiation on appropriate variables. Let us also introduce the
following notation: 2 = 4, L = o,, 2 = 0,.

(4)

Remark. The symmetry operators(¢, x)d,, where f (¢, x) is any solution of equation (1),
are excluded from further consideration.

In section 2 the necessary and sufficient condition under which the FPE is reduced to
a homogeneous FPE is obtained. In section 3 we find the criterion of invariance of the FPE
under four- and six-parametrical groups and the corresponding formulae transforming either to
heat or Schisdinger equations are calculated in section 4. Finally, in section 5 we give several
important examples of homogeneous FPEs and construct some classes of exact solutions for
the equation describing the Rayleigh process.

2. The basic theorem

Theorem 1. If a symmetry operator (2 # ud, for FPE (1) exists then we have the following
kind of transformation:

t=T(@) X=X x) u=v(t, x)i
which reduces it to equation (1) with coefficients of drift and diffusioa A(X), B = B(%).

Proof. A condition of the theorem implies that the solutiéf, &, x of the determining
equations (4) exists such that eitt§&ror £* are not identically equal to zero. Actually, from
conditionsz® = £ = 0 it follows thaty = A = const, i.e.Q = ud,. Furthermore, two
alternatives will be considered:
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(1) there is a solutiog® = 0, £, x;
(2) there is a solutiog® = 0, &1 = 0, x (in this case alk® = 0).

We shall prove the theorem for each of these alternatives.
(1) Let £ £ 0, £1, x be a solution of the determining equations (4). We consider
transformations

=T®) F

w u=v(t, x)i %)
whereT (t) = f

50(0' and the functions® = w(z, x), v(¢, x) satisfy the equations

%.Owt + Slwx =0

%, + v, = qv
wherew # const is any fixed solution of equation (6). It is easy to show that the symmetry
operator

(6)

Q = &%, +&%0, + yud,
with the new variablesi, %, ii) has the formQ = ;. Let us show that transformation (5)
exists which reduces equation (1) to a FPE with coefficidrifsx), B(t X). However, as the
transformed equation has the symmetry operétet 9;, it follows thatA = A(%), B = B(%).
So, by applying transformation (5) to equation (1) we find the following equation:
~ EO 1 l ~
uy = _{[_vt + (inx - Ax)v + (Bx - A)Ux + EBvxx]u
v
+H—vw; + (By — A)vw, + %B(vawx + vy, )]s + %vaf,ﬁ);;}. 7

This also means that in expressions dependent on variagblesit is necessary to make the
replacements, x) — (¢, ¥). For equation (7) to be a FPE it is necessary that the unknown
coefficientsA (7, ¥), B(7, %) satisfy the following equations:

B(i, %) = BE%?
. 5 1
Bi — A = —Eow, + (By — A)bow, + —Eow, B + ~Eowyy B
v 2 (8)

Az (1B —a
2 XX x — s0 ¥ 2 XX X
(@) We now consider the first of equations (8). Let us show &Bt = 0. From
transformations (5), (6) one may find that
0; = £°0, + &0, 9)
Then, from the first equations of (6) and (9) it follows that
0r(BE°w?) = £°w?[£°B, + & B, + §’B — 2B&}] = 0.

The last equality is carried out by virtue of equations (4).
(b) Now we consider the second equation of system (8). From the first equation of this
system we have

0
B;:é—a (Bw?).

Wy

Substituting this expression into the second equation of system (8) wa find

A =%, + AE%, — Z£%), B + ggow”B. (10)
v
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As well as in item (a) it is possible to show that the consequence of the system of equations
(4)is

N N 3
;A = (£%9, +£%9,) [s%f + A&, — 2E%, B + EE%MB] =0.
v

In the following A = A(%).

(c) Let us consider the third equation of system (8). The left-hand side of the equation
%ém —A; = F(¥) = F(w) follows from items (a) and (b). The general solution of the second
equation (6) isv(z, x) = v*(t, x)G(w), wherev*(z, x) is some solution of this equation, and
G(w) is an arbitrary function. Substituting this relation into the right-hand side of the third
equation in (8) we obtain

F(w) = Fi(t, x) + Fa(t, x)G' + F3(t, x)[G" + G'¥] Fa(t, x) £ 0.
By analogy with the items (a), (b) taking into account (4), (6), we come to
3:Fi(r, x) = [£°9, + £X9,]Fi(r,x) =0 i=123.
ThenF; = F;(X) = F;(w). Finally, we have
F(@) = Fy(@) + F(@)G' + F@)][G"+G?]  F3#0.

Choosing functiorG (w) as some solution of this equation, we find transformation (5), where
T =/ é% v(t,x) = v*({, x)G(w), which reduces the appropriate FPE (1) to a FPE with
coefficientsB (%), A(X).

(2) Let there be a solution of the determining equations (4) sucrethat0, £1 £ 0, x.
In this case we choose transformations

f=t X =R(t,x) u=v(t,x)i (11
under the condition of
E'Ry =1 &loe=xw. (12)

The proof of the existence of transformations (11), (12) which to do not change the form
of FPE is similar to the proof given in item (1). Under these the transformation operator
0 = €9, + xud, is reduced ta) = 3;. Then the new coefficients, B in the transformed
FPE depend only on. As is known, such equations are reduced to the heat equation by
transformations of the following kind:

t=T(@) X =R, x) u = v(t, x)i. 13)

The theorem is, therefore, proved. O
Theorem 2. The dimension of an invariance algebra of FPE (1) can be equal to 1, 2, 4 or 6.

Proof. If the dimension of algebra is greater than 1 then equation (1) is reduced to the equation
with A = A(X), B = B(x). Classification of such equations is also known: the dimension of
their invariance algebra is either 2, 4 or 6 [14]. |
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3. Criterion of invariance FPE under four- and six-parametrical groups of symmetry

In [19] it is shown that any diffusion process with coefficients of daft, x) and diffusion
B(t, x) can be reduced to a process with appropriate coefficiéftsy) = A(r, x)/B(t, x)
andB(r,x) =1 through the random replacement of timg). Using the result of theorem 1
we perform a symmetry classification of FPE for the coefficidts x) = 1 and anyA(z, x)
just as was done in [14] for the cage= A(x) (a homogeneous process). So, by putting
B = 1into equations (4) it is easy to show that

£0=1(1) £l =1xt' + @)

3.7 17/ 17/ "
STM+TtM +(5Tx+o)M, = 5T'x + ¢

X = %“L'/)CA(I, x) — %xzf” —@'x+@A(t,x) + t/

X0

ot

de +0(r)

whereM = A, + %A” +AA,, xoandd(¢) are arbitrary point and function, respectively. Let us
find a condition oM under which there exists at least two linearly independent solutigns

of equations (14). In this case, from theorem 2, it follows that there exists either three or five
operators of symmetry (besides trividll,). Let us assume thaf,, # 0. After differentiating

both parts (14) twice on we have

gT/Mxx +TMyy t (%T/x + )My = 0. (15)
Now, if we assume thav,,, = 0, i.e.M,, = F(¢), then the following condition holds:
StU'F+1F =0. (16)

For this equation there is only one linearly independent solution, theréfore # 0. Then
from (15):
5M,.+xM M,y

X;M;x e+ M:; T =h(t,x)T +r(t, x)t.
So if (11, 1), (12, @2) are linearly independent then, 1, are linearly independent, and also
h.t'+r,t =0. Thus,

—p() =

heti+ry1y =0 hyty + et = 0.

4
As the Wronskiar’ ;} zl # 0, then from this system it follows that, = 0,r, =0, i.e.
2

2

SMXX +XMxxx Mxxt
oM. () M. r(t) (17)

From conditions (17) it is easy to deduce that
M=xx—H@)+F@)x+G() (18)

wherex = const# 0, andH, F, G are arbitrary functions. Now notice thatM,, = 0, M
has the form of (18) withh. = 0. Thus condition (18) is necessary for the invariance algebrato
possess dimension four or six. Substituting (18) into (15) and equating zero factorsHit

(x — H)~*and 1, we obtain the following conditions:
20F+7F =3t"  AtH' —3TH-¢)=0 (19)
ST/(FH + G) + T(F/H + G/) + F(%T/H + QO) — %.L.///H + QOW.

(1) Letx # 0. Derivingo(t) = tH' — %r’H from the second equation and substituting
it into the third equation we have

StU(FH+G—H"Y+t(FH+G—H") =0.
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Due to the condition of existence at least two independent solutipmsresult in the equation
FH+G — H” = 0. In this case the number of fundamental solutions of system (19) is three.
Actually, there are three linear independent solutiens,, 73 of the first equation of (19).
From the second equation of (18)is expressed by;,i =1, 2, 3.

(2) If A = 0, the system of equations (19) has five linearly independent soluttons ),
i=105.

The theorem is therefore proved.

Theorem 3. (1) The class FPE (1) witlB = 1 admitting four-dimensional algebra of
invariance is described by the condition

A+ 2A G+ AA = A(x — H(1) 3+ F()x +G(t) (20)
wherex = const# 0, G satisfies the condition
G=H'—FH (21)

whereF (t), H(¢) are arbitrary functions.
(2) The class FPE (1) wittB = 1 admitting six-dimensional algebra of invariance is
described by condition (20) in which= 0, F, G are arbitrary functions.

Remark. In particular, if the coefficienti (z, x) satisfies the Burgers equation then FPE (1) is
reduced to the heat equation (see [20]).

4. Transformation of the Fokker—Planck equations to homogeneous equations

(2) It turns out that FPE (1)K = 1), (20) at» = 0 is reduced to the heat equation [20]. We
find the appropriate transformation (5), (6). lrebe any solution of system (19) and> 0
(evidently it is always possible to choose the solutign > 0 on some interval). From the
formulae (6), (14) it is easy to prove thatr, x) = t%/2x — j;; (&)t ~%2(&) dr, whererg is an
arbitrary fixed point. Let us consider the transformation

- 1 [dt
2 T
t
F=owtx)=1"x- / p(&)T %) dg (22)
fo
u(t, x) = v(t, x)i(t, x).
Having made in (1), (20) the replacement variable (22) we arrive at the equation
i; = —2¢ (3+Ax+Av—" . Evﬁ)a
v v v
-2 (—%‘L’l/z‘t/x —pr Y2+ ALY v—xrl/2> Uz + gz (23)
v

Equating the factor ai; to zero, we obtain

v= exp( — 1t — tlpx + /X A(t, §)dg + h(t)) (24)

0
whereh(t) is an arbitrary function andg is some fixed point. Substituting (24) into the
expressiort: + A, + A% — %UT (factor atz in (23)) and equating it to zero we get
W (1) =3[t 729 — 317t — Ac(1, x0) — A%(1, x0)] (25)

%r’lr” - %rz(r’)z =F iy — %rzt/go =G. (26)
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It is easy to prove that ifr # 0, ¢) is some solution of system (26) then it satisfies system
(19) (A = 0, M = 0). Then we have transformation (22), where functiots x), 7 (¢), ¢(¢)
can be found from (24)—(26), reducing FPE (1), (20)= 0) to the heat equation

i = iizs. 27)

Note that system (26) is reduced to the following:

/ t
2y +y2 = 4F y = T Q= 7:1/2/ Y26 dr. (28)
T fo
(2) We now consider FPE (1), (20) with= 0. Asin case (1), transformation (22) reduces
this equation to (23). The conditions for (23) to be a FPE are as follows:
A= A(a)) =t Y/x — 2@1‘% +2A7Y% — 211/2&
v

(29)

~ v v, lu,
Ap=2t [ —+A, +A— — ——
v v v

wherew is given in (22). The first condition is equivalent to the equation (see (9))
~ 1 x
;A = |:18t + (E‘L’/X + go) 8x:| (—r_l/zt/x - 2(,01:% +2ATY2 — 211/21)—) =0. (30)
v
Omitting intermediate calculations we give the general solutienx) of equation (30):

v(t,x) = exp[/x A(t, &) de — %T—lf/xz — 1t tpx +k(a))j| (31)

X0
wherek(w) is an arbitrary functionx is some fixed point. Substituting (31) into the first
equation of (29) one can easily verify that= —k'(w) (k'(w) = %)), Furthermore, let us
substituteA (o) = —k' (), v(t, x) (31) into the second equation of (29). Having chosen the
conditions

t

1'1/2/ ot ¥2dr = H %r‘lr” - ‘—111_21’2 =F 7l — %‘L’_Z‘C/go =G (32)
o

K — k% = a2 (33)

the second equation of (29) is satisfied. Condition (32) is a possible choice because, as it is

easy to verify, any solution # 0, ¢ of the given system is a particular solution of the equation

systems (19), (21). System (32), taking into account (21), is equivalent to

!/

2y +y2 = 4F y = T? o =120 YV2RY. (34)
Thus the theorem is proved.
Theorem 4. FPE (1), (20), (21) with» # O, invariant under four-parameter algebra of
invariance, through transformations

i=T®) F=1tx -t Y2H() u=v(t, x)i(, x)

10 d

whereT = 3 w0 V(. X) has the form of (31), where # 0 is any solution of the first

equation of (34) k(w) is a solution of equation (33) and is reduced to the equation

ii; = 2k ()il + 2k’ ()il + fhrr-

Remark. By making the following replacement in the last equation:

1

F= F=w ii = exptk(w))i
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and taking account condition (33), this equation is reduced to the followingo8iciyer
equation:

- A
up = uzz + —uU.
X

Thus, in a FPE with a four-parametrical group of symmetry there exists an ‘initial’ equation
to which they are reduced; however, the equation is not a FPE as it takes place in a six-
parametrical group.

5. Homogeneous examples of the FPEs having six- and four-parametrical groups of
symmetry and some classes of exact solutions

In section 2 we specified a necessary and sufficient condition reducing FPE (15 with
to a homogeneous FPE with = 1, i.e. to the equation with a coefficient of drift= A(x).
The appropriate replacement variablesx, u) — (7, x, i) were also constructed. Now we
list examples of the homogeneous equations which are frequently met in applications.

5.1. Equations which are reduced to the heat equation

(1) The equation describing the Ornstein—Uhlenbeck process [1]:

ou d 1 0%
— = —(kxu)+ -D—.
o~ a5
HereA = —kx, B = D = const. Furthermore, in all examples whete= const O it is
possible, without restriction of generality, to ppit= 1. Using the replacement

u(t,x) = v(t, X)), x(t, x)) (36)
wherev(t, x), 7, X are found from formulae (22), (24)—(26):

(39)

.1
v = exp(kr) x = exp(kt)x t= e exp(2kt)

where the Ornstein—Uhlenbeck equation (35) results in heat equation (27).
(2) Diffusional process in a field of force, of weight [1]:
B _ D e 1 9%
ot ox o T 2o
Equation (37) is reduced to (27) through replacement (36), where

(37)

=ex gzt X = f—lz
v =exp|—gx 5 X=x =5

(3) The equation of a Rayleigh-type process [15]:

u 9 1 19%u

—=— -= +-— 38

ot ox |:<yx x) u] 2 9x? (38)
is reduced to (27) through replacement (36), where

-1
v = exp2yt)x X = exp(yt)x t= ™ expi2yt).
i4

Let us consider three equations (39)—(41) describing models in population genetics [6]:

ou

82
@ M= a- (39
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Using replacement [10]

dx
“=mmrey T =] 5o

equation (39) results in
W = —(AQ)w)T + Fwy,
where A(y) = 2th(v/2y), B = 1. ltis easy to verify thatd(y) satisfies condition

(20) @ = 0). Then the superposition of the above transformation and the corresponding
replacement (22), (24)—(26) gives replacement (36), where

1 1+ .
v =exp(—1) (1 —x?)~%? f=_In—" i=1
2 1—«x
which transforms equation (39) into heat equation (27).
ou a3, 5
— =——=[x"(1 - . 4
6) =5l @] (40)
With the method used in item (4) we get replacement (36), where
_ _a —3/2,1 _ 2\-3/2 ~ X ~_a
v_exp< 8t>x (1—x9 x_Inl_x t—2t.
u o d? ’ 3
(6) rrie EW[(X —o)ul+ ﬁa[(x — cul. (41)

Equation (41) is reduced to heat equation (27) through replacement (36), where

2
v:GXp{—('B—+E+g)t}(x—c)(3/2+’3/°‘) X =42/aln(x —¢) f=t.

20 2 8
(7) A FPE of the type [9]
u a 0%u
= - — 42
” Spla@Ox +b@Ou +e(t) o (42)

is transformed into heat equation (27) by replacement (36), where [15]
v = expla(r)} ¥ = expla()}x + B(1) t=y()
and, furthermore,

a(t) = —/ta(s) ds B(t) = /tb(s) expla(s)}ds y = /tc(s) exp{2a(s)} ds.
0 0 0

5.2. Equations with four-parametrical invariance group

(2) In [5] the following equation was considered:

du 3 92
i —a(axu) + ﬁ(ﬁxu). (43)

Using the replacement

1
u:%w(t,y) T=t y=+2x/8

we transform equation (43) into the following FPE:

Jw a ay 1 10%w
- = — _ —wl+=—
ot ay 2 2y 2 9y?
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whereA(y) = (5 — %) satisfies condition (20).
(2) Let us consider a FPE [6]
du 3 (1, 192 (1 ,,
- = +-— (= P 44
ot ox (4x ”> 2 0x2 <2x ! (44)

wherep # —% (the casep = % corresponds to a six-parametrical group: see example (6)).
Using the replacement

2V2 Gy
2p+1
we find that equation (44) is reduced to the following FPE:
dw (1 192w
—_— = —w )t =-—
ot dy \ 2y 2 9y?
whereA(y) = & satisfies condition (20).
(3) We consider the equation describing the Rayleigh process:

u=2x?D2y(1, y) T=t y=

du /i 92u

R I + o — 45

ot 0x [<x yx) u] Hoxz (45)
wherey, u are arbitrary constants. The functiéf = 1 — L*, satisfies condition (20). The

invariance group of equation (45) is also neither isomorphic to the invariance group of the heat
equation nor reduced to it with the help of local transformations.

Theorem 5. The maximal invariance algebra of equation (45) is a four-dimensional algebra
A4 with the basic operators

9 19 9
Po= —  Dy=expi2yi) <—— Fx— 4 (1— sz) 1)

at at a

0 " 19 xa g (46)
I =u— Dy =exp(—2yt}| —— +tx— —1

au y ot ox

which satisfy the commutation relations
4

Py, D1l =2y D D1, Dyl = — Py +41
[Po, D1] [D1, D] S Fo 7)

[Po, Dl] = 2]/D [1, Po] = [I]_, Dl] = [[1, Dz] = O

The proof can be obtained by Lie’s method. Let us take advantage of operators (46) for
construction of the exact solutions of equation (1). First of all, we show that its known
stationary solution [1]
2
us(x) = 7 exp(—&) (48)
W 2u
is the special case of the solution invariant under the opef2tdd6). For this purpose we
construct the ansatz (substitution) invariant unbgr According to the algorithm of [18] if
the equation has operator symmetry, then an exact solution can be found in the form
ux) =y (x)p(w)
wherey (x) is a function defined from the condition
Qv (x) = [E°(t, x)d, + E1(t, x)0 +n(t, x, w)] Y (x) =0
£9(1, x)d,0 + EX(t, )00 = 0.
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Table 1.
Subalgebra Invariant variable Ansatz
| w1 =1, wr=x u=20
%Po+(l +a)l w=x u =exply(l+a)t}p(w)
D> w = exp{ytix u = exp{ytlp(w)
—%Dz +1 w = exp{yt}x u = explytr + e'}p(w)
2 Ayt .2
IDi—iDy+al  0=524 u=explyt - & G5 +aarctge | ()

An anzatz leads to the reduction of a FPE to an ordinary differential equation (ODE) for a
functiong(w). For the operatoD; this ansatz has the form

yx?
u(t,x) =x exp<—2—> o(w) w = x exp(yt). (49)
n
The substitution of (49) into (45) gives the ODE
wp+ep=0 (50)

where the overdot designates differentiationonThe general solution of equation (50) is
() =cilnw+cy. (51)

The substitution of (51) into (49) gives the following solution of equation (45):

2
u(t, x) :xexp{—%} (ci(yt +Inx) +c). (52)

It is easy to see that solution (48) follows from (52) whgn= 0, ¢, = y/u. For a more
regular description of the solutions of equation (45) we find one-dimensional unequivalent
subalgebras of the invariance algebra(46), (47), and then for every such subalgebra we
construct an invariant ansatz. Firstly, we notice that algetyas isomorphic to algebra
AGL(2,R) = ASL(2, R) & I, the isomorphism is achieved by the linear transformation

1
Bi==Py+1 B, =3D; B3=—3D; By=1.
14
Using this fact, we construct table 1 showing one-dimensional subalgebras and the appropriate
invariant ansatze.
As a result of the substitution of ansatze 2-5 from table 1 in (45) we have following
reduced ODEs:

@) na’G+ (v — pw)g + (n — o) =0
3) 0*G —wp+e=0
(53)
(4) na’G — pwg + (1 2y0®)p =0
(5) 4P’ + (20 — 2yapw + p)p = 0.

In particular, it is easy to find the general solution of the third equation of (53) and, using the
appropriate third ansatz from the table, to obtain the particular solution of equation (45):

u(t, x) = x exp{2yt}(c1 + c2(Inx + yt)).
6. Conclusions

We found the criterion when a FPE with a time-dependent drift coefficient can be reduced to a
homogeneous FPE with the help of local transformations. It appears that it is connected with
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symmetry properties of this equation: namely, a FPE is reduced to a homogeneous equation
if and only if even one operator of symmetry different fraed), exists. From this criterion

and previous results [14] it turns out that the dimension of the group of symmetry of a one-
dimensional FPE can equal 1, 2, 4 or 6. Moreover, in the case where a FPE is invariant under
six- or four-parametrical groups they can be reduced with the help of local transformations to
the ‘initial’ equations: namely, to the heat equation or to the 8dimger one with the potential

Vix) = x% respectively. It is worth noting that specific FPEs in applications are invariant, as
arule, under groups of symmetry with the given dimensions. If one has the solutions of these
two ‘initial’ equations it is possible to build the solutions of an appropriate FPE. In the case of
the Schodinger equation solutions can be found by the reduction method to the ODEs, using
one-dimensional subalgebras of its four-dimensional algebra.

The questions of how to construct a transformation to reduce a FPE with a two-dimensional
group of symmetry to a homogeneous FPE and whether or not there is an appropriate ‘initial’
equation still remain open. However, here, as well as in the case of a one-dimensional group of
symmetry, the approach of non-local transformations (for example, Darboux transformations)
is possible. Itwould also be interesting to investigate conditionalednditional invariancy,
which generalizes the concept of Lie invariancy (see [18]).
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